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Abstract
We present two kinds of integral solutions to the quantum Knizhnik–
Zamolodchikov equations for the 2n-point correlation functions of the
Heisenberg XYZ antiferromagnet. Our first integral solution can be obtained
from those for the cyclic SOS model by using the vertex–face correspondence.
By the construction, the sum with respect to the local height variables
k0, k1, . . . , k2n of the cyclic SOS model remains other than the n-fold integral
in the first solution. In order to perform these summations, we improve this to
find the second integral solution of (r +1)n-fold integral for r ∈ Z>1, where r is
a parameter of the XYZ model. Furthermore, we discuss the relations among
our formula, Lashkevich–Pugai’s formula and that of Shiraishi.

PACS numbers: 75.10.−b, 02.30.Ik, 05.50.+q

1. Introduction

Thirty years have passed since Baxter’s papers on the eight-vertex model [1] and the XYZ spin
chain [2] were published. In a series of papers [3–5] Baxter constructed the eigenvectors of
the Hamiltonian of the XYZ spin chain by translating the eight-vertex model to the equivalent
face model, the eight-vertex SOS model.

Though many authors have tried to extract the results on correlation functions of the eight-
vertex/XYZ model, very few results have been obtained. The spontaneous polarization was
conjectured by Baxter and Kelland [6], and the same results were reproduced by solving a set of
difference equations, the quantum Knizhnik–Zamolodchikovequation (q-KZ equations) in [7].
On the basis of the Z-invariance the integral formulae of correlation functions were obtained
in the special case that the eight-vertex model can be factorized into two independent Ising
models [8]. A free field representation of the type I [9] and type II [10] vertex operators was
constructed to express the correlation functions and the form factors of the eight-vertex/XYZ
model in terms of those of the eight-vertex SOS model [11].
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There are several ways of addressing the problem of correlation functions of integrable
models. The vertex operator approach [12] provides a powerful tool to calculate the correlation
functions of the six-vertex/XXZ model [13], the RSOS-type model [11, 14, 15]. The bootstrap
approach [7, 16] is based on the corner transfer matrix (CTM) method [17] and enables us
to derive a set of difference equations of correlation functions. Note that the CTM method
can be applied to a massive integrable model such as the XYZ Heisenberg chain in the
antiferromagnetic regime. Kitanin et al [18, 19] developed the algebraic Bethe ansatz method
for obtaining domain wall correlation functions of the XXZ model, using the determinant
structure of the partition function.

In this paper we try to construct the correlation functions of the XYZ antiferromagnet by
directly solving a set of difference equations, bootstrap equations. These equations are derived
on the basis of the CTM bootstrap in [7]. In a previous paper [20] we did the same thing for
both the bulk and boundary XXZ antiferromagnets. Let us cite some results concerning the
bulk XXZ case from [20].

The 2n-point correlation functions of the bulk XXZ antiferromagnet with the spectral
parameters (ζ ) = (ζ1, . . . , ζ2n) and the spin variables ε = (ε1, . . . , ε2n) can be expressed up
to a scalar function of ζ in the following form:

G
(n)

σ (ζ )
ε =

∏
a∈A

∮
Ca

dwa
2π

√−1wa
�(n)
σ ({wa}a∈A|ζ )Q(n)({wa}a∈A|ζ )ε (σ = ±) (1.1)

where

A := {a|εa > 0, 1 � a � 2n}. (1.2)

The function Q(n)(w|ζ )ε is a meromorphic function defined below, and �(n)
σ (w|ζ ) is a

kernel with appropriate transformation properties [20, equations (2.32)–(2.33)] and recursion
relations [20, equation (2.34)]. The subscript σ = ± in (1.1) specifies one of the two vacuums
of the XXZ model in the antiferromagnetic regime. The explicit expression of Q(n)(w|ζ )ε is
as follows:

Q(n)(w|ζ )ε =
∏
a∈A

ζa

a−1∏
j=1

(xzj −wa)

2n∏
j=a+1

(xwa − zj )

 ∏
a,b∈A
a<b

(x−1wb − xwa)
−1 (1.3)

where zj = ζ 2
j . Here we note the relation between our previous work [20] and [21, 22], the

latter in which the correlation functions of the massless XXZ model were obtained. Since
the XXZ model has only one vacuum in the massless regime, the vacuum structure of the
massless XXZ model is very different from that of the XXZ antiferromagnet. Nevertheless,
the structures of the integral formulae for the correlation functions in both regimes are quite
similar. In order to see such similarity, let us substitute x = e−ε , ζj = e−εβj and wa = e−2εαa

into (1.3). Then we have

Q(n)(w|ζ )ε = const
∏
a∈A

e(2n−1)εαa

a−1∏
j=1

sh ε

(
αa − βj − 1

2

) 2n∏
j=a+1

sh ε

(
βj − αa − 1

2

)
×

2n∏
j=1

enεβj
∏
a,b∈A
a<b

(sh ε(αa − αb + 1))−1 . (1.4)

When |x| = 1 (ε ∈ √−1R), expression (1.4) is equal to the meromorphic functionQn(α|β)ε
in [21], the massless analogue of Q(n)(w|ζ )ε, up to a trivial factor. Furthermore, we should
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note here that the corresponding expression for the eight-vertex SOS model which will be
given in section 2 also possesses quite similar structure to (1.4).

The XYZ Heisenberg antiferromagnet has two parameters q and p, where p = (−q)2r .
Lashkevich and Pugai [9] gave the n-fold integral formulae for the 2n-point correlation
functions G in terms of those of the SOS model F as follows:

G(u1, . . . , u2n|u0)=
∑

k0,k1,...,k2n

t
k0
k1
(u1 − u0)⊗ · · · ⊗ t

k2n−1
k2n

(u2n − u0)F (u1, . . . , u2n|u0)
k0k1···k2n.

(1.5)

Here u1, . . . , u2n are additive spectral parameters, u0 is an auxiliary parameter and tkk±1(u) are
the intertwining vectors introduced by Baxter [3, 4]. The sum with respect to kj (1 � j � 2n)
should be taken over kj = kj−1 ±1. However, the sum with respect to k0 depends on the value
of r. In (1.5) r > 1 is supposed. When r is a rational number of the form 2r = N/N ′ (N, N ′

coprime), we should take the sum over Z/NZ, otherwise over Z.
On the other hand, Shiraishi [23] constructed the formulae of the correlation functions

of the XYZ model without using the vertex–face correspondence. There are three main
differences between Lashkevich–Pugai’s formulae and those of Shiraishi. Shiraishi restricted
himself to the case r = 3

2 , while r > 1 in (1.5). Furthermore, the 2n-point correlation
functions in the style of Shiraishi are of the 2n-fold integral form, whilst being n-fold in the
former case. These two differences seem to be the disadvantages of Shiraishi’s formulae in a
sense; however, the third difference gives an advantage. Shiraishi constructed the type II and
type I vertex operators of the eight-vertex model as intertwiners of the q-deformed Virasoro
algebra [24], without transforming those of the SOS model via vertex–face correspondence.
Thus, the sums with respect to kj in (1.5) are not needed.

In the present paper we wish to synthesize the advantages of the two formulae. Namely,
we construct (r + 1)n-fold integral formulae for the 2n-point correlation of the XYZ model
with r ∈ Z>1, by using the vertex–face correspondence, and performing the sum with respect
to kj .

The rest of the present paper is organized as follows. In section 2 we formulate the
XYZ antiferromagnet and the corresponding cyclic SOS model. In section 3 we present the
bootstrap equations and construct integral formulae for correlation functions for the cyclic
SOS model. In section 4 we further present integral formulae for the correlation functions of
the XYZ antiferromagnet. In section 5 we give some concluding remarks. In the appendix we
list some properties of the R-matrix of the eight-vertex model.

2. The XYZ antiferromagnet and the cyclic SOS model

2.1. The Hamiltonian and the R-matrix

The Jacobi theta functions with the characteristics a, b ∈ R are defined by

ϑ

[
a

b

]
(u; τ ) :=

∑
m∈Z

exp{π√−1(m + a)[(m + a)τ + 2(u + b)]}. (2.1)

The ith theta functions are defined as follows:

θ1(u; τ ) = ϑ

[
1/2

−1/2

]
(u; τ ) θ2(u; τ ) = ϑ

[
1/2
0

]
(u; τ )

θ3(u; τ ) = ϑ

[
0
0

]
(u; τ ) θ4(u; τ ) = ϑ

[
0

1/2

]
(u; τ ).
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These theta functions have the infinite product forms, e.g.,

θ1(u; τ ) = √−1q
1
4 e−√−1πu�q2(e2

√−1πu) θ2(u; τ ) = q
1
4 e−√−1πu�q2(−e2

√−1πu)

where q = exp(
√−1πτ) and we used the standard notation

�p(z) := (z;p)∞(pz−1;p)∞(p, p)∞ (a;p1, . . . , pn)∞ =
∏
ki�0

(
1 − ap

k1
1 · · ·pknn

)
.

In this section we consider the XYZ spin chain in an infinite lattice [5, 17]

HXYZ = −1

2

∑
j∈Z

(
σxj+1σ

x
j + σyj+1σ

y

j +�σzj+1σ
z
j

)
. (2.2)

Here σxj , σyj and σ zj denote the standard Pauli matrices acting on the j th site, and we restrict
ourselves to the antiferromagnetic regime || < 1 and � < −1, where

 = 1 − γ

1 + γ
γ = −

θ2
1

(√−1ε
π

; 2
√−1εr
π

)
θ2

4

(√−1ε
π

; 2
√−1εr
π

) > 0

� = − 1

1 + γ

θ2
4

(
0; 2

√−1εr
π

)
(θ2θ3)

(√−1ε
π

; 2
√−1εr
π

)
(θ2θ3)

(
0; 2

√−1εr
π

)
θ2

4

(√−1ε
π

; 2
√−1εr
π

) .
The condition || < 1 and � < −1 is equivalent to the one such that ε > 0 and r > 1. The
antiferromagnetic XXZ Hamiltonian can be obtained by taking the limit r → ∞. In this limit
we have γ → 0 and � → −(x + x−1)/2, where 0 < x = e−ε < 1. As is well known, the
XXZ Hamiltonian thus obtained commutes with the quantum affine algebraU−x(ŝl2) [12]. Let
V = Cv+ + Cv− be a vector representation of U−x(ŝl2). Then the limiting XXZ Hamiltonian
formally acts on V ⊗∞ = · · · ⊗ V ⊗ V ⊗ · · ·. In [12] the space of states V ⊗∞ was identified
with the tensor product of level 1 highest and level −1 lowest representations of U−x(ŝl2). It
is very likely that the same structure survives in the nonlimiting generic case. In other words,
the XYZ antiferromagnet is expected to have the symmetry described by the elliptic affine
algebra Aq,p(ŝl2) [25, 26], where q = −x and p = x2r .

The XYZ Hamiltonian (2.2) can be obtained from the transfer matrix for the eight-vertex
model, by taking the logarithmic derivative with respect to the spectral parameter ζ . The
R-matrix R8V (ζ ) ∈ End(C2 ⊗ C2) of the eight-vertex model is given as follows:

R8V (ζ ) = 1

κ(ζ )
R8V (ζ )

(2.3)
R8V (ζ ) = w4(u)I ⊗ I +w2(u)σ

x ⊗ σx +w3(u)σ
y ⊗ σy +w1(u)σ

z ⊗ σ z

where z = ζ 2 = x2u and

wα(u) =
θα

(
1
2r + u

r
; π

√−1
εr

)
θα

(
1
2r ; π

√−1
εr

) .

In what follows we denote R8V (ζ ) and R8V (ζ ) by R(ζ ) and R(ζ ), respectively, when there is
no fear of confusion. In the above expression we modify Sklyanin’s parametrization [27] such
that (2.3) coincides with that of Baxter [17] in the principal regime. The normalization factor

κ(ζ ) = [u + 1]

[1]
κ̄(ζ ) [u] = x

u2

r
−u�x2r (x2u)

(2.4)

κ̄(ζ ) = ζ
r−1
r
(x4z; x4, x2r )∞(x2z−1; x4, x2r )∞(x2rz; x4, x2r )∞(x2r+2z−1; x4, x2r )∞
(x4z−1; x4, x2r )∞(x2z; x4, x2r )∞(x2rz−1; x4, x2r )∞(x2r+2z; x4, x2r )∞
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is chosen such that the partition function per site is unity. In other words, the factor κ(ζ ) is the
partition function per site of the unnormalized model defined by R(ζ ). For later convenience
we also introduce the symbol {u} by

{u} = x
u2

r
−u�x2r (−x2u).

Note that

θ1

(
u

r
; π

√−1

εr

)
=
√
εr

π
exp

(
−εr

4

)
[u] θ4

(
u

r
; π

√−1

εr

)
=
√
εr

π
exp

(
−εr

4

)
{u}.

Let C2 = Cv+ ⊕ Cv− and introduce the matrix elements of the R-matrix as follows:

R(ζ )vε1 ⊗ vε2 =
∑

ε′
1,ε

′
2=±

vε′
1
⊗ vε′

2
R(ζ )

ε′
1ε

′
2

ε1ε2 = 1

κ(ζ )

∑
ε′

1,ε
′
2=±

vε′
1
⊗ vε′

2
R(ζ )

ε′
1ε

′
2

ε1ε2 . (2.5)

Then the nonzero entries are given by

R(ζ )++
++ = R(ζ )−−

−− = a(ζ ) =
(θ2θ3)

(
u
2r ; π

√−1
εr

)
(θ1θ4)

(
u+1
2r ; π

√−1
εr

)
(θ2θ3)

(
0; π

√−1
εr

)
(θ1θ4)

(
1
2r ; π

√−1
εr

)
R(ζ )+−

+− = R(ζ )−+
−+ = b(ζ ) = −

(θ1θ4)
(
u
2r ; π

√−1
εr

)
(θ2θ3)

(
u+1
2r ; π

√−1
εr

)
(θ2θ3)

(
0; π

√−1
εr

)
(θ1θ4)

(
1
2r ; π

√−1
εr

)
(2.6)

R(ζ )+−
−+ = R(ζ )−+

+− = c(ζ ) =
(θ2θ3)

(
u
2r ; π

√−1
εr

)
(θ2θ3)

(
u+1
2r ; π

√−1
εr

)
(θ2θ3)

(
0; π

√−1
εr

)
(θ2θ3)

(
1
2r ; π

√−1
εr

)
R(ζ )++

−− = R(ζ )−−
++ = d(ζ ) = −

(θ1θ4)
(
u
2r ; π

√−1
εr

)
(θ1θ4)

(
u+1
2r ; π

√−1
εr

)
(θ2θ3)

(
0; π

√−1
εr

)
(θ2θ3)

(
1
2r ; π

√−1
εr

) .

Assume that the parameters u, ε and r lie in the so-called principal regime [17]:

ε > 0 r > 1 −1 < u < 0 0 < p < x < ζ−1 < 1

where x = e−ε , p = x2r and ζ = xu. The main properties of the R-matrix are listed in the
appendix.

2.2. Vertex–face correspondence

In order to construct the eigenvectors of the eight-vertex model, Baxter introduced the
following intertwining vector [3, 4]:

tkk±1(u) = f (u)t̄kk±1(u)
(2.7)

t̄ kk±1(u) = (
√−1)k(θ1θ4)

(
k ∓ u

2r
; π

√−1

εr

)
v+ + (

√−1)−k(θ2θ3)

(
k ∓ u

2r
; π

√−1

εr

)
v−.

The normalization factor f (u) satisfies the relation

C2[u]f (u)f (u− 1) = 1 C = εr

π
e− εr

4
(x2r, x2r )∞
(−x2r , x2r )∞

. (2.8)

The explicit expression of f (u) is as follows:

f (u) = x− u2

2r + r−1
2r u+ 1

4

C
√
(x2r; x2r)∞

(x4z; x4, x2r )∞(x2r+2z; x4, x2r )∞
(x2z; x4, x2r )∞(x2rz; x4, x2r )∞

. (2.9)
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The SOS model is a face model [4] which is defined on the square lattice with a site variable
ki ∈ Z attached to each site i. We call ki local state or height and impose the condition that
the heights of the adjoining sites differ by one. Local Boltzmann weight is assumed to be a
function of the spectral parameter u and to be denoted byW

(
c d
b a

∣∣u), which is given for a state
configuration cb�d

a around a face. Here the four states a, b, c and d are ordered clockwise from
the SE corner. The nonzero Boltzmann weights are given as follows:

W

(
k ± 2 k ± 1
k ± 1 k

∣∣∣∣ u) = 1

κ̄(u)

W

(
k k ± 1

k ± 1 k

∣∣∣∣ u) = 1

κ̄(u)

[1]{k ∓ u}
[u + 1]{k}

W

(
k k ∓ 1

k ± 1 k

∣∣∣∣ u) = − 1

κ̄(u)

[u]{k ± 1}
[u + 1]{k} .

(2.10)

The normalization factor κ̄(u) given by (2.4) is chosen such that the partition function per site
is unity. Then we have the so-called vertex–face correspondence [4]:

R(u1 − u2)t
c
b (u1)⊗ tba (u2) =

∑
d

W

(
c d

b a

∣∣∣∣ u1 − u2

)
tda (u1)⊗ tcd (u2). (2.11)

The RHSs of the last two equations in (2.10) contain the factors such as {k}, while the
corresponding Boltzmann weights of the ABF model [28] are expressed in terms of the factors
such as [k]. Suppose that r is a positive integer greater than 1. Then the ABF model is called a
restricted SOS (RSOS) model, since [k] = 0 for k ∈ rZ and, therefore, the local states can be
restricted as k = 1, . . . , r−1. On the other hand, the present face model (2.10) is a cyclic SOS
model because {k + r} = {k}. In [9] the RSOS-type weights were used so that the following
regularization was required. In order to avoid the pole resulting from [k] in the denominator,
k ∈ Z + δ should be assumed with some real δ, and the limit δ → 0 should be taken after all
calculation [9]. In our case we do not need such regularization because {k} 	= 0 for k ∈ Z.

We also note that the intertwining vector (2.7) is closely connected with the 2r-dimensional
cyclic representation of Sklyanin algebra [29, 30]. Actually, the L-operator defined via
R8V LL = LLR8V relation can be factorized into the intertwining vector (2.7) and its dual
vector.

3. Bootstrap equations in the cyclic SOS model

3.1. Integral formulae for the cyclic SOS case

As a preliminary, let us consider the bootstrap equations and correlation functions for the
cyclic SOS model. Let

F (n)σ (ζ1, . . . , ζ2n)
kk1···k2n−1k (σ = ±) (3.1)

for |kj − kj−1| = 1 (1 � j � 2n) and k0 = k2n = k, be the 2n-point correlation function of
the eight-vertex SOS model. Then these functions satisfy the following three CTM bootstrap
equations [16]:

F (n)σ (. . . , ζj+1, ζj , . . .)
···kj−1kj kj+1...

=
∑
k′
j

W

(
kj+1 kj

k′
j kj−1

∣∣∣∣ ζj/ζj+1

)
F (n)σ (. . . , ζj , ζj+1, . . .)

···kj−1k
′
j kj+1··· (3.2)



Bootstrap equations and XYZ correlation functions 9555

F (n)σ (ζ1, . . . , ζ2n−1, x
2ζ2n)

k···k2n−1k = σ
{k}

{k2n−1}F
(n)
σ (ζ2n, ζ1, . . . , ζ2n−1)

k2n−1k···k2n−1 . (3.3)

F (n)σ (ζ1, . . . , ζ2n−2, ζ2n−1, x
−1ζ2n−1)

k···k2n−2k2n−1k = δk2n−2,k

{k} F (n−1)
σ (ζ1, . . . , ζ2n−2)

k···k. (3.4)

F (n)σ (ζ1, . . . , ζ2n−2, ζ2n−1,−x−1ζ2n−1)
k···k2n−2k±1k

= δk2n−2,k

e− π
√−1
2r (1±2k)

√−1{k} F (n−1)
σ (ζ1, . . . , ζ2n−2)

k···k. (3.5)

Set

F (n)σ (ζ )kk1···k2n−1k = cn
∏

1�j<k�2n

ζ
r−1
r

j g(zj /zk)× F
(n)

σ (ζ )
kk1···k2n−1k. (3.6)

Here cn is a constant which will be determined below, and the function g(z) has the properties

g(z) = g(x−4z−1) κ̄(ζ ) = ζ
r−1
r
g(z)

g(z−1)
. (3.7)

The explicit form of g(z) is as follows:

g(z)

= (x6z; x4, x4, x2r )∞(x2z−1; x4, x4, x2r )∞(x2r+6z; x4, x4, x2r )∞(x2r+2z−1; x4, x4, x2r )∞
(x8z; x4, x4, x2r )∞(x4z−1; x4, x4, x2r )∞(x2r+4z; x4, x4, x2r )∞(x2rz−1; x4, x4, x2r )∞

.

(3.8)

In order to present our integral formulae for F
(n)

σ (ζ ) let us prepare some notation. Let

A := {a|ka = ka−1 + 1, 1 � a � 2n}. (3.9)

Then the number of elements of A is equal to n, because we now set k2n = k0 = k.
We often use the abbreviations (w) = (

wa1 , . . . , wan
)
, (w′) = (

wa1 , . . . , wan−1

)
and

(w′′) = (
wa1 , . . . , wan−2

)
for aj ∈ A such that a1 < · · · < an. Let us define the following

meromorphic function:

Q(n)(w|ζ )kk1···k2n−1k =
∏
a∈A

{
va − ua +

1

2
− ka

}a−1∏
j=1

[
va − uj − 1

2

] 2n∏
j=a+1

[
uj − va − 1

2

]
×

2n−1∏
j=1

{kj}−1
∏
a,b∈A
a<b

[va − vb + 1]−1 (3.10)

where wa = x2va . Here we should note that the structure of expression (3.10) is quite similar
to that of (1.4).

We wish to find integral formulae of the form

F
(n)

σ (ζ )
kk1···k2n−1k =

∏
a∈A

∮
Ca

dwa
2π

√−1wa
�(n)
σ (w|ζ )Q(n)(w|ζ )kk1···k2n−1k. (3.11)

Here, the kernel has the form

�(n)
σ (w|ζ ) = ϑ(n)σ (w|ζ )

∏
a∈A

2n∏
j=1

x− (va−uj )2
2r ψ

(wa
zj

) ∏
1�j<k�2n

x− (uj−uk )2
4r (3.12)

where

ψ(z) = (x2r+3z; x4, x2r )∞(x2r+3z−1; x4, x2r )∞
(xz; x4, x2r )∞(xz−1; x4, x2r )∞

. (3.13)
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For the function ϑ(n)σ (w|ζ ) we assume that

• it is antisymmetric and holomorphic in the wa ∈ C\{0},
• it is symmetric and meromorphic in the ζj ∈ C\{0},
• it has the two transformation properties

ϑ(n)σ (w|ζ ′, x2ζ2n)

ϑ
(n)
σ (w|ζ )

= σx−2n+ 2n−1
r

∏
a∈A

wa

2n∏
j=1

ζ−1
j (3.14)

ϑ(n)σ
(
w′, x4wan |ζ

)
ϑ
(n)
σ (w|ζ )

= x−4n
2n∏
j=1

zj

wan
. (3.15)

• it satisfies the following recursion relation:

ϑ(n)σ (w′, x−1z2n−1|ζ ′′, ζ2n−1,±x−1ζ2n−1)

ϑ
(n−1)
±σ (w′|ζ ′′)

= (±x−1ζ 2
2n−1

)−(n− 1
2 )(1− 1

r
)

×
2n−2∏
j=1

ζ
− r−1

r

j

∏
a∈A
a 	=an

(± xu2n−1−va− 1
2
)
�x2(xwa/z2n−1). (3.16)

Here we also fix the constant cn as follows:

cn = (−1)n(n+1)/2xn
2/2

(x2; x2)
n(n−3)/2
∞ (x2r; x2r)

3n(n−1)/2
∞

{x2}n∞{x6}n∞{x2r+2}n∞{x2r+6}n∞
{x4}n∞{x8}n∞{x2r}n∞{x2r+4}n∞

(3.17)

where

{z}∞ := (z; x4, x4, x2r )∞.

The function ϑ(n)σ (w|ζ ) is otherwise arbitrary, and the choice of ϑ(n)σ (w|ζ ) corresponds to that
of solutions to (3.2)–(3.5). The transformation property of ϑ(n)σ (w|ζ ) implies

�(n)
σ (w|ζ ′, x2ζ2n)

�
(n)
σ (w|ζ )

= σ

2n∏
j=1

(
ζ2n

ζj

) r−1
r ∏
a∈A

[
va − u2n − 1

2

][
u2n − va + 3

2

] (3.18)

�(n)
σ

(
w′, x4wan

∣∣ζ )
�
(n)
σ (w|ζ )

=
2n∏
j=1

[
uj − van − 1

2

][
van − uj + 3

2

] . (3.19)

The integrand may have poles at

wa =

x±(1+4k+2rl)zj (1 � j � 2n, k, l ∈ Z�0)

x2wb (b < a)

x−2wb (b > a).

(3.20)

We choose the integration contour Ca with respect to wa (a ∈ A) such that Ca is along a
simple closed curve oriented anticlockwise, and encircles the points x1+4k+2rlzj (1 � j �
2n, k, l ∈ Z�0) and x2wb (b < a) but not x−1−4k−2rlzj (1 � j � 2n, k, l ∈ Z�0) nor
x−2wb (b > a). Thus the contour Ca actually depends on zj besides a, so that it should
be denoted by Ca(z) = Ca(z1, . . . , z2n), precisely. The LHS of (3.3) refers to the analytic
continuation with respect to ζ2n. Nevertheless, once we restrict ourselves to the principal
regime 0 < p < x < ζ−1

j < 1, we can tune all Ca to be the common integration contour
C : |wa| = x−1 because of the inequality xzj < x−1 < x−1zj .
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We are now in a position to state the following proposition regarding the correlation
functions and the bootstrap equations in the cyclic SOS model case.

Proposition 1. Assume the properties of the function ϑ(n)σ below (3.13) and the integration
contour Ca below (3.20). Then the integral formulae (3.6), (3.11) with (3.8), (3.10), (3.12),
(3.13) solve the four equations (3.2)–(3.5).

The proof of proposition 1 will be given in the subsequent subsections.

3.2. Proof of the W -symmetry

Let us first prove (3.2). For that purpose we have to consider four cases accordingly as
kj − kj−1 = ±1 and kj+1 − kj = ±1.

Suppose that kj − kj−1 = kj+1 − kj = −1. Then relation (3.2) holds, because the

integrand F
(n)

σ (ζ ) is evidently symmetric with respect to ζj and ζj+1.
Let (kj−1, kj , kj+1) = (m,m− 1,m) for some m. Then relation (3.2) reduces to

F
(n)

σ (. . . , ζj+1, ζj , . . .)
···mm−1m··· = [1]{m + uj − uj+1}

[uj − uj+1 + 1]{m}F
(n)

σ (. . . , ζj , ζj+1, . . .)
···mm−1m···

− [uj − uj+1]{m + 1}
[uj − uj+1 + 1]{m}F

(n)

σ (. . . , ζj , ζj+1, . . .)
···mm+1m···. (3.21)

Note that the set of integration variables in the second term of the RHS is different from the
other terms. Since wa = x2va are integration variables, we can replace both vj and vj+1 in the
integrand by v. After that, relation (3.21) follows from the equality of the integrands. In this
step we use{
v − uj +

1

2
−m

}[
v − uj+1 − 1

2

]
= [1]{m + uj − uj+1}

[uj − uj+1 + 1]{m}
{
v − uj+1 +

1

2
−m

}
×
[
v − uj − 1

2

]
− [uj − uj+1]{m− 1}

[uj − uj+1 + 1]{m}
{
v − uj − 1

2
−m

}[
uj+1 − v − 1

2

]
.

Suppose that (kj−1, kj , kj+1) = (m,m + 1,m) for some m. This case can be proved in a
similar way to the previous case. Here we use{
v − uj+1 − 1

2
−m

}[
uj − v − 1

2

]
= [1]{m− uj + uj+1}

[uj − uj+1 + 1]{m}
{
v − uj − 1

2
−m

}
×
[
uj+1 − v − 1

2

]
− [uj − uj+1]{m + 1}

[uj − uj+1 + 1]{m}
{
v − uj+1 +

1

2
−m

}[
v − uj − 1

2

]
.

Finally, let (kj−1, kj , kj+1) = (m − 1,m,m + 1) for some m. Then the integrand on the
RHS of (3.2) contains the factor

I (uj , uj+1; vj , vj+1)

=
{
vj − uj + 1

2 −m
} [
uj+1 − vj − 1

2

] {
vj+1 − uj+1 − 1

2 −m
} [
vj+1 − uj − 1

2

]
[vj − vj+1 + 1]

.

The corresponding factor on the LHS should be equal to I (uj+1, uj ; vj , vj+1). Thus the
difference between both sides contains the factor

I (uj , uj+1; vj , vj+1)− I (uj+1, uj ; vj , vj+1) = {m}[uj − uj+1]{vj + vj+1 − uj − uj+1 −m}
which is symmetric with respect to wj = x2vj and wj+1 = x2vj+1 . Since �(n)

σ (w|ζ ) is
antisymmetric with respect to wa , relation (3.2) in this case does hold.
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3.3. Proof of the cyclicity

In the proof of the cyclicity (3.3) we have to consider the two cases k2n−1 = k ± 1. First
let k2n−1 = k + 1. When integral (3.11) is analytically continued from ζ2n = xu2n to
x2ζ2n = xu2n+2, the points x1+4k+2rlz2n and x−1−4k−2rlz2n (k, l ∈ Z�0) move to the points
x5+4k+2rlz2n and x3−4k−2rlz2n, respectively. On the LHS of (3.3) the point wa = x3z2n(
va = u2n + 3

2

)
is therefore outside the integral contour C ′

a = Ca(z
′, x4z2n). Nevertheless, we

can deform C′
a to the original one Ca = Ca(z) without crossing any poles. That is because

the factor ∏
a∈A

[
u2n − va +

3

2

]
contained in Q(n)(w|ζ ′, x2ζ2n)

k···k+1k cancels the singularity at wa = x3z2n. Thus the integral
contours for both sides of (3.3) coincide.

Furthermore, by using (3.18) we obtain

�(n)
σ (w|ζ ′, x2ζ2n)

∏
a∈A

[
va − u2n − 3

2

]
= σ�(n)

σ (w|ζ )
∏
a∈A

[
u2n − va +

1

2

] 2n−1∏
j=1

(
ζj

ζ2n

) 1
r

which implies that the integrands on both sides of (3.3) coincide and therefore relation (3.3)
holds when k2n−1 = k + 1.

Next let k2n−1 = k−1. In this case we rescale the variablew2n 
→ x4w2n (v2n 
→ v2n + 2)
on the LHS of (3.3). Then the integral contour with respect to wa (a ∈ A\{2n}) will be
C′
a = Ca(z

′, x4z2n), and the other one will be C̃ = C2n(x
−4z′, z2n). For a ∈ A\{2n}, we can

deform the contour C′
a to the original Ca without crossing any poles, for the same reason

as in the previous case. The integral contour C̃ encircles x−3+4k+2rlzj and x1+4k+2rlz2n,
but not x−5−4k−2rlzj nor x−1−4k−2rlz2n, where 1 � j � 2n − 1, k, l ∈ Z�0. Since
Q(n)(w|ζ ′, x2ζ2n)

k···k−1k contains the factor

J (w′x4w2n|ζ ′, x2ζ2n) =
{
v2n − u2n +

1

2
− k

} 2n−1∏
j=1

[
v2n − uj +

3

2

] ∏
a∈A
a 	=2n

[
u2n − va + 3

2

]
[va − v2n − 1]

(3.22)

the pole at w2n = x−3zj (1 � j � 2n− 1) disappears. Thus we can deform the contour C̃ to
the original one C2n = C2n(z) without crossing any poles. Thus the integral contours on both
sides of (3.3) coincide.

Replace the integral variables such that (w′, w2n) 
→ (w2n,w
′) on the RHS of (3.3), and

compare the integrands on both sides. Note that (3.22) describes all w2n- and z2n-dependence
of Q(n)(w|ζ ′, x2ζ2n)

k···k−1k . From (3.18), (3.19) and the antisymmetric property of �(n)
σ with

respect to wa , we have

�(n)
σ (w′, x4w2n|ζ ′, x2ζ2n)J (w

′x4w2n|ζ ′, x2ζ2n)

= σ�(n)
σ (w2n,w

′|ζ )J (w2n,w
′|ζ )

2n−1∏
j=1

(
ζj

ζ2n

) 1
r

(3.23)

which implies that the integrands on both sides of (3.3) coincide and therefore relation (3.3)
holds when k2n−1 = k − 1.

3.4. Proof of the normalization condition

Let us prove (3.4) and (3.5). The factor g(z2n−1/z2n) has a zero at ζ2n = ±x−1ζ2n−1. On
the other hand, the two points xz2n and x−1z2n−1 are required to locate opposite sides of the
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integral contourCa , so that a pinching may occur as ζ2n → ±x−1ζ2n−1. If there is no pinching
the correlation function F (n)σ (ζ )k···k vanishes at ζ2n = ±x−1ζ2n−1.

Suppose that (k2n−2, k2n−1, k2n) = (k + 2, k+ 1, k). In this case the factor
[
va −u2n−1 + 1

2

]
contained in Q(n)(w|ζ )k···k+2k+1k cancels the poles of ψ(wa/z2n−1) at wa = x−1z2n−1, and
therefore no pinching occurs as ζ2n → ±x−1ζ2n−1. Thus conditions (3.4) and (3.5) hold when
(k2n−2, k2n−1, k2n) = (k + 2, k + 1, k).

When (k2n−2, k2n−1, k2n) = (k − 2, k − 1, k), no pinching occurs for the integral contour
for Ca (a ∈ A\{2n − 1, 2n}), for the same reason as in the previous case. Concerning
the integral with respect to w2n−1 and w2n, there are no singularities at w2n−1 = xz2n and
w2n = xz2n and consequently no pinching actually occurs. In order to see such vanishing
singularities, we first note that the functionQ(n)(w|ζ )k···k−2k−1k contains the factor:

q(v2n−1, v2n; u2n−1, u2n)

=
{
v2n−1 − u2n−1 + 3

2 − k
} [
u2n − v2n−1 − 1

2

] {
v2n − u2n + 1

2 − k
} [
v2n − u2n−1 − 1

2

]
[v2n−1 − v2n + 1]

.

Because of the antisymmetric property of ϑ(n)σ with respect to wa , the zero of
ϑ(n)σ (w′′, w2n−1, xz2n|ζ ) atw2n−1 = xz2n cancels the poles ofψ(w2n−1/z2n) at the same point.
Furthermore, the poles of ψ(w2n/z2n) and ψ(w2n/z2n−1) at w2n = xz2n and z2n = x−2z2n−1

are cancelled by the zeros of g(z2n−1/z2n) and Q(n)(w′′, w2n−1, xz2n|ζ )k···k−2k−1k at the same
points. The latter cancellation can be shown as follows. Note that the integral is invariant as
we replace Q(n)(w′′, w2n−1, xz2n|ζ )k···k−2k−1k by its antisymmetric part with respect to w2n−1

and xz2n. Accordingly, we can replace the factor q
(
v2n−1, u2n+ 1

2 ; u2n−1, u2n
)

by the following
factor:

q
(
v2n−1, u2n + 1

2 ; u2n−1, u2n
)− q

(
u2n + 1

2 , v2n−1; u2n−1, u2n
)

= {
v2n−1 − u2n−1 + 3

2 − k
} {1 − k}[u2n−1 − u2n]

+
{u2n − u2n−1 + 2 − k}[1]

{
v2n−1 − u2n + 1

2 − k
} [
v2n−1 − u2n−1 − 1

2

][
u2n + 3

2 − v2n−1
]

that vanishes when z2n = x−2z2n−1
(
u2n = u2n−1 − 1 or u2n = u2n−1 − 1 − π

√−1
ε

)
. Thus

there is no singularity at w2n = xz2n as ζ2n → ±x−1ζ2n−1. The same thing at w2n−1 = xz2n

can be easily shown in the same way. Hence conditions (3.4) and (3.5) are verified when
(k2n−2, k2n−1, k2n) = (k − 2, k − 1, k).

Next let (k2n−2, k2n−1, k2n) = (k, k − 1, k) and consider the limit ζ2n → x−1ζ2n−1. In
this case there is no pinching for the integrals with respect to wa (a ∈ A\{2n}). Let Ĉ denote
the integral contour with respect to w2n such that Ĉ encircles the same points as C2n does
but xz2n. Note that no pinching occurs with respect to the integral along Ĉ because both the
two points x−1z2n−1 and xz2n lie outside the contour Ĉ. Thus the integral with respect to w2n

along the contour C2n can be replaced by the residue at w2n = xz2n.
In order to evaluate the residue, the following formulae are useful:

lim
z2n→x−2z2n−1

g

(
z2n−1

z2n

)
ψ

(
xz2n

z2n−1

)
= 1

(x2; x2r )∞(x2r−2; x2r)∞

{x4}∞{x8}∞{x2r}∞{x2r+4}∞
{x2}∞{x6}∞{x2r+2}∞{x2r+6}∞

(3.24)

Resw2n=xz2n

dw2n

w2n
ψ

(
w2n

z2n

)
= 1

(x2; x2)∞(x2r; x2r)∞
(3.25)

g(z)g(x2z)ψ(xz)[u + 1] = x
(u+1)2

r
−(u+1)(x2r; x2r )∞ (3.26)
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ψ

(
w

z

)
ψ

(
x2w

z

)[
u− v − 1

2

]
= x

(u−v−1/2)2

r
−(u−v−1/2)(x2r; x2r)∞

(xw/z; x2)∞(xz/w; x2)∞
. (3.27)

Using these, condition (3.4) with (k2n−2, k2n−1, k2n) = (k, k − 1, k) reduces to

cn−1ϑ
(n−1)
σ (w′|ζ ′′) = cnϑ

(n)
σ (w′, x−1z2n−1|ζ ′′, ζ2n−1, x

−1ζ2n−1)

× (−1)nx−(2n−1)(1− 1
2r )ζ

(2n−1)(1− 1
r
)

2n−1 (x2; x2)n−2
∞ (x2r; x2r )3(n−1)

∞

× {x4}∞{x8}∞{x2r}∞{x2r+4}∞
{x2}∞{x6}∞{x2r+2}∞{x2r+6}∞

2n−2∏
j=1

ζ
r−1
r

j

∏
a∈A
a 	=2n

xva−u2n−1+ 1
2

�x2(xwa/z2n−1)

which is valid under the assumption of (3.16) and (3.17). Relation (3.5) with
(k2n−2, k2n−1, k2n) = (k, k − 1, k) can be similarly proved.

When (k2n−2, k2n−1, k2n) = (k, k+ 1, k), the only difference from the previous case is that
the rational functionQ(n)(w|ζ )···kk+1k contains the factor{
v2n−1 − u2n−1 − 1

2 − k
} [
u2n − v2n−1 − 1

2

]
{k + 1}

∣∣∣∣∣
w2n−1=xz2n

= −{u2n − u2n−1 − k}[1]

{k + 1} (3.28)

in the present case, while the corresponding factor in the previous case is{
v2n − u2n + 1

2 − k
} [
v2n − u2n−1 − 1

2

]
{k − 1}

∣∣∣∣∣
w2n=xz2n

= [u2n − u2n−1]. (3.29)

Since (3.28) is equal to (3.29) as ζ2n = x−1ζ2n−1, condition (3.4) with (k2n−2, k2n−1, k2n) =
(k, k + 1, k) follows from the previous case. Condition (3.5) with (k2n−2, k2n−1, k2n) =
(k, k + 1, k) can be similarly proved. Finally, conditions (3.4) and (3.5) were proved
componentwise.

3.5. Non-trivial theta function

In subsections 3.2–3.4 we proved proposition 1. The key point in proving (3.2) was the
W -matrix symmetry of the rational function Q(n)(w|ζ )k···k. We observed that the other two
conditions (3.3) and (3.4) hold under the assumption of the transformation properties and the
recursion relation of ϑ(n)σ . Actually, you can easily find that (3.14), (3.15) and (3.16) are
sufficient conditions of (3.3) for k2n−1 = k + 1, (3.3) for k2n−1 = k− 1 and (3.4), respectively.

In this way we obtained the integral solutions to CTM bootstrap equations for correlation
functions of the cyclic SOS model, with the freedom of the choice of ϑ(n)σ . Now we wish to
present an example of ϑ(n)σ satisfying all the properties given below (3.13).

ϑ(n)σ (w|ζ ) = �x2

−σx
∏
a∈A

w−1
a

2n∏
j=1

ζj

 2n∏
j=1

ζ
−(n− 1

2 )(1− 1
r
)

j

∏
a,b∈A
a<b

xvb−va�x2(wa/wb). (3.30)

You can easily see that (3.30) satisfies all the properties of symmetry with respect to ζj ,
antisymmetry with respect towa , (3.14), (3.15) and (3.16). We also note that there are actually
no poles at wa = x2wb (b < a) and wa = x−2wb (b > a) when we fix ϑ(n)σ to (3.30) because
of the factor �x2(wa/wb). Furthermore, we note that this example of the function ϑ(n)σ (w|ζ )
is quite similar to the antiferromagnetic XXZ analogue [20].
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4. Integral formulae for the XYZ antiferromagnet

4.1. Correlation functions and difference equations

Let us introduce the V ⊗2n-valued correlation functions

G(n)
σ (ζ1, . . . , ζ2n) =

∑
εj=±

vε1 ⊗ . . .⊗ vε2nG
(n)
σ (ζ1, . . . , ζ2n)

ε1···ε2n (4.1)

where σ = ± signifies one of the two vacuums of the XYZ Heisenberg antiferromagnet. Let

O = E
(1)
ε1ε

′
1
· · ·E(n)εnε′

n
(4.2)

where E(j)
εj ε

′
j

is the matrix unit on the j th site. Then the correlation function (4.1) gives the

expectation value of the local operator (4.2) by specializing the spectral parameters as follows:

〈O〉σ = G(n)
σ (

n︷ ︸︸ ︷
x−1ζ, . . . , x−1ζ ,

n︷ ︸︸ ︷
ζ, . . . , ζ )−εn ···−ε1ε

′
1···ε′

n . (4.3)

In what follows we often use the abbreviations: (ζ ) = (ζ1, . . . , ζ2n), (ζ ′) =
(ζ1, . . . , ζ2n−1), (ζ ′′) = (ζ1, . . . , ζ2n−2), (z) = (z1, . . . , z2n), (z′) = (z1, . . . , z2n−1); and
(ε) = (ε1 · · · ε2n), (ε′) = (ε1 · · · ε2n−1), (ε′′) = (ε1 · · · ε2n−2). On the basis of the CTM
(corner transfer matrix) bootstrap approach, the correlation functions satisfy the following
three conditions [7]:

1. R-matrix symmetry

Pjj+1G
(n)
σ (. . . , ζj+1, ζj , . . .)

= Rjj+1(ζj/ζj+1)G
(n)
σ (. . . , ζj , ζj+1, . . .) (1 � j � 2n− 1) (4.4)

where P(x ⊗ y) = y ⊗ x.
2. Cyclicity

P12 · · ·P2n−12nG
(n)
σ (ζ

′, x2ζ2n) = σG(n)
σ (ζ2n, ζ

′). (4.5)

3. Normalization

G(n)
σ (ζ

′′, ζ2n−1, ζ2n)|ζ2n=sx−1ζ2n−1 = G(n−1)
sσ (ζ ′′)⊗ us (s = ±) (4.6)

where us = v+ ⊗ v− + sv− ⊗ v+.

These three conditions can be recast componentwise as follows:

G(n)
σ (. . . , ζj+1, ζj , . . .)

···εj+1εj ··· =
∑

ε′
j ,ε

′
j+1=±

R(ζj /ζj+1)
εj εj+1

ε′
j ε

′
j+1
G(n)
σ (. . . , ζj , ζj+1, . . .)

···ε′
j ε

′
j+1···

(4.7)

G(n)
σ (ζ

′, x2ζ2n)
ε′ε2n = σG(n)

σ (ζ2n, ζ
′)ε2nε

′
(4.8)

G(n)
σ (ζ

′′, ζ2n−1, sx
−1ζ2n−1)

ε′′ε2n−1ε2n = ε
(1−s)/2
2n−1 δε2n−1+ε2n,0G

(n−1)
sσ (ζ ′′)ε

′′
(s = ±). (4.9)

Combining (4.7) and (4.9) we obtain another expression for the normalization condition:∑
s=±

ε(1−s)/2G(n)
σ (ζ

′′, ζ2n−1, sxζ2n−1)
ε′′ε−ε = G(n−1)

sσ (ζ ′′)ε
′′

where we also use

R(sx−1) =


0 0 0 0
0 s 1 0
0 1 s 0
0 0 0 0

 .
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Note that the first two conditions imply the difference equation of the quantum KZ type
[31] of level −4:

TjG
(n)
σ (ζ ) = Rjj−1(x

−2ζj/ζj−1) · · ·Rj1(x
−2ζj/ζ1)Rj2n(ζj/ζ2n) · · ·Rjj+1(ζj/ζj+1)G

(n)
σ (ζ )

(4.10)

where Tj is the shift operator such that

TjF (ζ ) = F(ζ1, . . . , x
−2ζj , . . . , ζ2n) (4.11)

for any 2n-variable function F. When the definition of Tj is replaced by

TjF (ζ ) = F(ζ1, . . . , x
l+2ζj , . . . , ζ2n)

and all the arguments x−2ζj /ζk in the first line of the RHS of (4.10) are also replaced by
xl+2ζj/ζk, the difference equation (4.10) is called the quantum KZ equations of level l.

Remark. As a result of Z2-symmetry of R-matrix, there are two ground states in the XYZ
antiferromagnet. Let us specify the two ground states by i = 0, 1, and denote the correlation
function on the ith ground state by G(n)

i (ζ ). Theoretically speaking, representation of the
correlation function G(n)

i (ζ ) refers to the trace of type I vertex operators on the irreducible
highest weight module H(i) of Aq,p(ŝl2) [26]. The CTM bootstrap approach suggests that
bothG(n)

0 (ζ ) and G(n)
1 (ζ ) will appear in the cyclicity condition as follows:

P12 · · ·P2n−12nG
(n)
i (ζ1, . . . , ζ2n−1, x

2ζ2n) = G
(n)
1−i (ζ2n, ζ1, . . . , ζ2n−1).

Thus we introduceG(n)
σ (ζ ) = G

(n)

0 (ζ )+σG(n)

1 (ζ ) such that the second equation (4.5) involves
onlyG(n)

σ (ζ ).

Thanks to (3.7) the first two equations (4.7) and (4.8) are rephrased in terms of G
(n)

σ (ζ )

and R(ζ ) as follows:

G
(n)

σ (. . . , ζj+1, ζj , . . .)
···εj+1εj ··· =

∑
ε′
j ,ε

′
j+1=±

R(ζj/ζj+1)
εj ,εj+1

ε′
j ,ε

′
j+1
G
(n)

σ (. . . , ζj , ζj+1, . . .)
ε′
j ,ε

′
j+1 (4.12)

G
(n)

σ (ζ
′, x2ζ2n)

ε′ε2n = σG
(n)

σ (ζ2n, ζ
′)ε2nε

′
2n−1∏
j=1

(
ζ2n

ζj

) r−1
r

. (4.13)

4.2. Generalized correlation functions of the SOS model

For later convenience we also introduce another meromorphic functionQ(n)(w|ζ )kk1···k2n−1k−2l ,
where 0 � l � n. Since k2n = k − 2l, the number of elements of the following set A′ is equal
to n:

A′ = A  {2n + 1, . . . , 2n + l}.
Let k2n+i = k2n + 2i = k − 2(l − i) for 1 � i � l. Then the meromorphic function
Q(n)(w|ζ )kk1···k2n−1k−2l is defined as follows:

Q(n)(w|ζ )kk1···k2n−1k−2l =
∏
a∈A

{
va − ua +

1

2
− ka

}a−1∏
j=1

[
va − uj − 1

2

] 2n∏
j=a+1

[
uj − va − 1

2

]
× (−1)l

2n+l∏
a′=2n+1

{
va′ − u0 + 1

2 − ka′
}[

va′ − u0 − 1
2

]
 2n∏
j=1

[
va′ − uj − 1

2

]
×

2n−1∏
j=1

{kj}−1
∏
a,b∈A′
a<b

[va − vb + 1]−1. (4.14)
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When l = 0, the meromorphic function (4.14) is evidently reduced to the expression
of (3.10).

We further introduce the generalized correlation function of the cyclic SOS model as
follows:

F
(n)

σ (ζ )
kk1···k2n−1k−2l =

∏
a∈A′

∮
Ca

dwa
2π

√−1wa
�(n)
σ (w|ζ )Q(n)(w|ζ )kk1···k2n−1k−2l (4.15)

where the integral kernel �(n)
σ (w|ζ ) and the integral contour Ca are, respectively, the same as

in the previous section.
Formula (4.15) can be used only for k2n � k. However, by noticing the fact

that the Boltzmann weights of the cyclic SOS model (2.10) are invariant under the shift
(a, b, c, d) 
→ (−a,−b,−c,−d), we should obtain the expression for k2n = k + 2l > k from

F
(n)

σ (ζ )
−k−k1···−k2n−1−k−2l as follows:

F
(n)

σ (ζ )
kk1···k2n−1k+2l =

∏
a∈A′−

∮
Ca

dwa
2π

√−1wa
�(n)
σ (w|ζ )Q(n)(w|ζ )kk1···k2n−1k+2l (4.16)

where

Q(n)(w|ζ )kk1···k2n−1k+2l =
∏
a∈A−

{
va − ua +

1

2
+ ka

}a−1∏
j=1

[
va − uj − 1

2

] 2n∏
j=a+1

[
uj − va − 1

2

]
× (−1)l

2n+l∏
a′=2n+1

{
va′ − u0 + 1

2 + ka′
}[

va′ − u0 − 1
2

]
 2n∏
j=1

[
va′ − uj − 1

2

]
×

2n−1∏
j=1

{kj}−1
∏

a,b∈A′
−

a<b

[va − vb + 1]−1. (4.17)

Here

A− := {a|ka = ka−1 − 1, 1 � a � 2n} A′
− = A−  {2n + 1, . . . , 2n + l}

and k2n+i = k2n − 2i = k + 2(l − i) for 1 � i � l.

4.3. First integral formula for the XYZ correlation functions

Let

G(n)
σ (ζ1, . . . , ζ2n) = (

√−1)−n
∑

k0,k1,...,k2n

t
k0
k1
(u1 − u0)⊗ · · · ⊗ t

k2n−1
k2n

(u2n − u0)

×F (n)σ (ζ1, . . . , ζ2n)
k0k1···k2n . (4.18)

Here ζj = xuj , and

F (n)σ (ζ )kk1···k2n = cn
∏

1�j<k�2n

ζ
r−1
r

j g(zj /zk)× F
(n)

σ (ζ )
kk1···k2n

where F
(n)

σ (ζ )
kk1···k2n is defined by (4.15), (4.14) for k2n � k, otherwise by (4.16), (4.17). The

sum with respect to kj (1 � j � 2n) should be taken over kj = kj−1 ± 1. The sum with
respect to k0 should be as follows. When r ∈ Q and 2r = N/N ′ (N,N ′ are coprime), we have

tN+k
N+k±1(u) = (−1)N

′
tkk±1(u).
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The cyclic SOS correlation function F (n)σ (ζ )kk1···k2n is evidently invariant under the shift
(k, k1, . . . , k2n) 
→ (k +N, k1 +N, . . . , k2n +N). Thus the summand in (4.18) is also invariant
under the same shift, so that the sum with respect to k0 can be taken over Z/NZ. Since there
is no such invariance, the sum with respect to k0 should be taken over Z when r is irrational.
From these observations we have

∑
k0

=

∑N−1

k0=0 if r ∈ Q 2r = N/N ′ (N,N ′ are coprime)∑
k0∈Z if r 	∈ Q.

(4.19)

Simple observation shows that the R-matrix symmetry (4.4) follows from theW -symmetry
(3.2) for (4.15), (4.16). The cyclicity for the generalized correlation functions in the cyclic
SOS model does not hold but we have the following relations.

Proposition 2. For fixed k0 = k, k1, . . . , k2n−2, k2n−1 = k′ with kj = kj−1 ± 1
(1 � j � 2n− 1), the following cyclicity relations hold:∑
s=±1

tk
′
k′+s(u2n − u0 + 2)F (n)σ (ζ1, . . . , ζ2n−1, x

2ζ2n)
kk1···k2n−2k

′k′+s

=
∑
s=±1

tk−sk (u2n − u0)F
(n)
σ (ζ2n, ζ1, . . . , ζ2n−1)

k−skk1 ···k2n−2k
′
. (4.20)

Proof. Let k′ = k− 2l + 1 with 1 � l � n. (The case k′ = k + 2l− 1 can be similarly proved.)
For ε = ± let

hε(u) := θ2−εθ3+ε

(
u

2r
; π

√−1

εr

)
=
{
θ1θ4

(
u
2r ; π

√−1
εr

)
(ε > 0)

θ2θ3
(
u
2r ; π

√−1
εr

)
(ε < 0).

Then from (2.7), (2.9) relation (4.20) is reduced to

(−1)l[u2n − u0 + 1]
∑
s=±1

hε(k
′ − s(u2n − u0 + 2))F (n)σ (ζ ′, x2ζ2n)

kk1 ···k2n−2k
′k′+s

+ [u2n − u0 + 2]
∑
s=±1

shε(k − s(u2n − u0 + 1))F (n)σ (ζ2n, ζ
′)k−skk1 ···k2n−2k

′ = 0.

(4.21)

Here we used the abbreviation ζ ′ = (ζ1, . . . , ζ2n−1) and the functional relation

f (u + 2)

f (u)
= [u + 1]

[u + 2]
.

Simple calculations show that∑
s=±1

hε(k
′ − s(u2n − u0))F

(n)
σ (ζ ′, ζ2n)

kk1···k2n−2k
′k′+s

=
∏
a∈A′

∮
Ca

dwa
2π

√−1wa
�(n)
σ (wa1 , . . . , w2n+l|ζ1, . . . , ζ2n)Fε,l (v|u0, u1, . . . , u2n)

(4.22)
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where

Fε,l (v|u0, u1, . . . , u2n) = hε(k − 2l + 2 + u0 + u2n − 2v2n+1)

× [u2n − u0][
v2n+1 − u0 − 1

2

] l∏
i=2

{
v2n+i − u0 + 1

2 − k + 2(l − i)
}[

v2n+i − u0 − 1
2

] [
v2n+i − u2n − 1

2

]

×
∏
a∈A
a<2n

{
va − ua +

1

2
− ka

}a−1∏
j=1

[
va − uj − 1

2

] 2n∏
j=a+1

[
uj − va − 1

2

]
× (−1)l−1

2n+l∏
a′=2n+1

2n−1∏
j=1

[
va′ − uj − 1

2

] 2n−2∏
j=1

{kj }−1
∏
a,b∈A′
a<b

[va − vb + 1]−1.

(4.23)

It follows from the definition that 2n ∈ A and A′ = A  {2n + 1, . . . , 2n + l − 1} when s = 1,
and that 2n 	∈ A and A′ = A  {2n + 1, . . . , 2n + l} when s = −1 on the LHS of (4.22). Thus
we made the shift of variables (w2n, . . . , w2n+l−1) 
→ (w2n+1, . . . , w2n+l) for s = 1 in (4.22).
Furthermore, in order to derive the expression of (4.23) we used the identity[
v − u− 1

2

][
v − u0 − 1

2

] {v − u0 − 1

2
− k

}
hε(k + u− u0)−

{
v − u− 1

2
− k

}
hε(k − u + u0)

= − [u− u0]{k}hε(k + 1 + u0 + u− 2v)[
v − u0 − 1

2

] .

By repeating similar calculations we find that equation (4.21) is reduced to∏
a∈A′

∮
Ca

dwa
2π

√−1wa
�(n)
σ (w|ζ1, . . . , ζ2n)Al(v|u)Bε,k,l (v2n+1, . . . , v2n+l |u0, u2n) = 0 (4.24)

where

Al =
∏
a∈A
a<2n

{
va − ua +

1

2
− ka

}[va − u2n − 1

2

] a−1∏
j=1

[
va − uj − 1

2

] 2n−1∏
j=a+1

[
uj − va − 1

2

]

×
2n+l∏
i=1

[
v2n+i − u0 +

3

2

]−1
2n−1∏
j=1

[
uj − v2n+i − 1

2

] 2n−2∏
j=1

{kj }−1

×
∏
a,b∈A′
a<b<2n

[va − vb + 1]−1
∏

a,a′∈A′
a<2n<a′

[va − va′ − 1]−1
∏

a′,b′∈A′
2n<a′<b′

[va′ − vb′ + 1]−1

Bε,k,l = hε(k − 2l + u0 + u2n − 2v2n+1)

l∏
i=2

{
v2n+i − u0 +

5

2
− k + 2(l − i)

}
×
[
v2n+i − u2n − 1

2

]
+ (−1)lhε(k − 2 + u0 + u2n − 2v2n+l)

×
l−1∏
i=1

{
v2n+i − u0 +

3

2
− k + 2(l − i)

}[
u2n − v2n+i − 1

2

]
.
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It is evident that (4.24) for l = 1 holds because Bε,k,1 = 0. In order to prove (4.24) for
l > 1, we wish to show that

Bε,k,l (v|u0, u2n) =
l−1∑
i=1

[v2n+i − v2n+i+1 + 1]B(i)ε,k,l (v|u0, u2n) (4.25)

where B(i)ε,k,l is some function that is symmetric with respect to v2n+i and v2n+i+1. Suppose that
(4.25) is true. Then AlBε,k,l is the sum of l− 1 terms, each of which is symmetric with respect
to v2n+i and v2n+i+1. Correspondingly, integral (4.24) vanishes from the antisymmetry of �(n)

σ

with respect to w. The claim of this proposition is, therefore, reduced to equation (4.25).
Let us show (4.25) by induction for l > 1. The validity of equation (4.25) for l = 2

follows from the following identity:

Bε,k,2(v2n+1, v2n+2|u0, u2n)

= hε(k − 4 + u0 + u2n − 2v2n+1)
{
v2n+2 − u0 + 5

2 − k
} [
v2n+2 − u2n − 1

2

]
+ hε(k − 2 + u0 + u2n − 2v2n+2)

{
v2n+1 − u0 + 7

2 − k
} [
u2n − v2n+1 − 1

2

]
= −hε(k − 3 + u0 − u2n){k − 3 + u0 + u2n − v2n+1 − v2n+2}[v2n+1 − v2n+2 + 1].

(4.26)

For l > 2, the assumption of the induction implies

Bε,k−2,l−1(v2n+1, . . . , v2n+l−1|u0, u2n)

=
l−2∑
i=1

[v2n+i − v2n+i+1 + 1]B(i)ε,k−2,l−1(v2n+1, . . . , v2n+l−1|u0, u2n).

The validity of equation (4.25) for general l thus follows from the relation:

Bε,k,l (v2n+1, . . . , v2n+l|u0, u2n)

= Bε,k−2,l−1(v2n+1, . . . , v2n+l−1|u0, u2n)

{
v2n+l − u0 +

5

2
− k

}
×
[
v2n+l − u2n − 1

2

]
+ (−1)lBε,k,2(v2n+l−1, v2n+l|u0, u2n)

×
l−2∏
i=1

{
v2n+i − u0 +

3

2
− k + 2(l − i)

}[
u2n − v2n+i − 1

2

]
where we again use (4.26). �

As a corollary of proposition 2, we have

Corollary 3. The cyclicity (4.5) holds for the XYZ correlation functions (4.18).

4.4. Normalization in the XYZ case

Furthermore, we find that the following normalization condition holds for the generalized
correlation functions in the cyclic SOS model for k2n ≡ k (mod 2):

F (n)σ (ζ ′′, ζ2n−1, sx
−1ζ2n−1)

k···k′k′±1k2n = δk′,k2n

ds

{k2n}F
(n−1)
σ (ζ ′′)k···k

′
(s = ±) (4.27)

where

ds =
{

1 (s > 0)

e− π
√−1
2r (1+r±2k) (s < 0).
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Proposition 4. The normalization condition (4.6) holds for the XYZ correlation functions
(4.18).

Proof. First we note the following identity:

θ1θ4

(
k + u

2r
; π

√−1

εr

)
θ2θ3

(
k − u

2r
; π

√−1

εr

)

− θ1θ4

(
k − u

2r
; π

√−1

εr

)
θ2θ3

(
k + u

2r
; π

√−1

εr

)

= θ2θ3

(
0; π

√−1

εr

)
θ1

(
u

2r
; π

√−1

εr

)
θ4

(
k

2r
; π

√−1

εr

)
= C2[u]{k} (4.28)

where C is the same constant as the one defined in (2.8). Using (4.28) and (2.8), we have∑
s=±1

tkk+s(u2n−1 − u0)
ε2n−1 tk+s

k (u2n − u0)
ε2n

∣∣∣∣∣
u2n=u2n−1−1

= √−1{k}δε2n−1+ε2n,0. (4.29)

Furthermore, we also have∑
s=±1

e−s π
√−1k
r tkk+s(u2n−1 − u0)

ε2n−1 tk+s
k (u2n − u0)

ε2n

∣∣∣∣∣
u2n=u2n−1−1− π

√−1
ε

= ε2n e− π
√−1
2r {k}δε2n−1+ε2n,0. (4.30)

Thus, the normalization condition (4.6) in the XYZ Heisenberg antiferromagnet follows from
(4.29), (4.30) and (4.27). �

From corollary 3 and proposition 4, we have the following theorem.

Theorem 5. The XYZ correlation functionG(n)
σ (ζ ) (4.18) solves the bootstrap equations (4.4)–

(4.6).

4.5. Second integral formula for the XYZ correlation functions

In this subsection we assume that r ∈ Z>1. The integral formula (4.18) remains the sum with
respect to the local height variables k, k1, . . . , k2n in the cyclic SOS model. Thus, expression
(4.18) consists of 2r × 22n terms because of (4.19) and the condition kj = kj−1 ± 1 for
1 � j � 2n.

Now we wish to present another integral solution to the bootstrap equations (4.4)–
(4.6). Equation (4.22) shows that the sum with respect to k2n with fixed k, k1, . . . , k2n−1

can be performed to be in a simple form. In order to repeat this procedure with respect to
k2n−1, . . . , k1, we find that the number of integral variables should be greater than 2n for the
2n-point correlation function.

Let k2n = k + 2n − 2l (0 � l � 2n). Then the number of the set A is equal to 2n − l,
where

A := {a|ka = ka−1 + 1, 1 � a � 2n}.
We further introduce the set of indices

A′′ = A  {2n + 1, . . . , (r + 1)n + l}.



9568 Y-H Quano

Note that the number of the setA′′ is equal to (r +1)n. Let k2n+i = k2n+2i = k+2(n− l+ i) for
1 � i � (r− 1)n+ l. Then the meromorphic functionQ(n)(w|ζ )kk1···k2n with k2n = k + 2n− 2l
is defined as follows:

Q(n)(w|ζ )kk1···k2n =
∏
a∈A

{
va − ua +

1

2
− ka

}a−1∏
j=1

[
va − uj − 1

2

] 2n∏
j=a+1

[
uj − va − 1

2

]
× (−1)n−l

(r+1)n+l∏
a′=2n+1

{
va′ − u0 + 1

2 − ka′
}[

va′ − u0 − 1
2

]
 2n∏
j=1

[
va′ − uj − 1

2

]
×

2n−1∏
j=1

{kj}−1
∏

a,b∈A′′
a<b

[va − vb + 1]−1. (4.31)

Set

F̃ (n)σ (ζ )
kk1···k2n = c̃n

∏
1�j<k�2n

ζ
r−1
r

j g(zj /zk)× F̃
(n)

σ (ζ )
kk1···k2n (4.32)

where c̃n is some constant, and

F̃
(n)

σ (ζ )
kk1···k2n =

∏
a∈A′′

∮
Ca

dwa
2π

√−1wa
�̃(n)
σ (w|ζ )Q(n)(w|ζ )kk1···k2n . (4.33)

Here, the kernel has the form

�̃(n)
σ (w|ζ ) = ϑ̃ (n)σ (w|ζ )

∏
a∈A′′

2n∏
j=1

x− (va−uj )2
2r ψ

(wa
zj

) ∏
1�j<k�2n

x− (uj−uk )2
4r . (4.34)

The function ϑ̃ (n)σ (w|ζ ) is a function of (r + 1)n w and 2n ζ . The properties of ϑ̃ (n)σ (w|ζ ) are
the same as those of ϑ(n)σ (w|ζ ), but on the RHS of (3.14) the product with respect to a should
be taken over A′′.

The second integral formula of the XYZ correlation functions is as follows:

G̃(n)
σ (ζ ) = (

√−1)−n
∑

k0,k1,...,k2n

t
k0
k1
(u1 − u0)⊗ · · · ⊗ t

k2n−1

k2n
(u2n − u0)F̃

(n)
σ (ζ )k0k1···k2n . (4.35)

This formula essentially solves the first two of the bootstrap equations. The R-matrix symmetry
(4.4) evidently holds. The modified cyclicity

P12 · · ·P2n−12nG̃
(n)
σ (ζ

′, x2ζ2n) = σ(−1)(r−1)nG̃(n)
σ (ζ2n, ζ

′) (4.36)

can be proved in a similar manner as in proposition 2 and corollary 3.
The advantage of the second formula consists in the fact that the sum with respect to

k1, . . . , k2n can be carried out. By repeating the similar calculation as (4.22) was derived, we
find

G̃(n)
σ (ζ ) =

∏
a∈A′′

∮
Ca

dwa
2π

√−1wa
�̃(n)
σ (w|ζ )Q̃(n)(w|ζ )
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where

Q̃(n)(w|ζ )ε1···ε2n =
2r−1∑
k=0

(
√−1)−n+

∑2n
j=0 εj (k−2n−1+j)(−1)(r+1)n

×
2n∏
a=1

[ua − u0][
va − u0 − 1

2

]
a−1∏
j=1

[
va − uj − 1

2

] 2n∏
j=a+1

[
uj − va − 1

2

]
×

(r−1)n∏
i=1

{
v2n+i − u0 + 1

2 − k − 2(n + i)
}[

v2n+i − u0 − 1
2

]
 2n∏
j=1

[
v2n+i − uj − 1

2

]
×

2n∏
j=1

f (uj − u0)hεj (k + j + u0 + uj − 2vj )
∏

a,b∈A′′
a<b

[va − vb + 1]−1. (4.37)

Finally, we have to carry out the sum with respect to k of the following form:

F (n)(u0|{uj }1�j�2n|{va}1�a�(r+1)n)
ε =

2r−1∑
k=0

(
√−1)k

∑2n
j=0 εj

2n∏
j=1

hεj (k + j + u0 + uj − 2vj )

×
(r−1)n∏
i=1

{
v2n+i − u0 +

1

2
− k − 2(n + i)

}
. (4.38)

This function F (n) has precise quasi-periodicities as a function of u0, uj (1 � j � 2n) and
va (1 � a � (r + 1)n). In particular, you can easily find the u0-dependent part of F (1).
Furthermore, if the limit r → 1 is taken, the explicit expression for n = 1 can be obtained as
follows:

F (1)(u0|u1, u2|v1, v2)
ε1ε2

=
{
C−θ2

(
u1−u2

2 − v1 + v2; π
√−1
ε

)
θ3
(
u0 + u1+u2

2 − v1 − v2; π
√−1
ε

)
(ε1ε2 < 0)

C+θ1
(
u1−u2

2 − v1 + v2; π
√−1
ε

)
θ4
(
u0 + u1+u2

2 − v1 − v2; π
√−1
ε

)
(ε1ε2 > 0).

(4.39)

Here C± are some constants times exponential functions of u0, u1, u2, v1, v2.

5. Concluding remarks

In this paper we have constructed two integral solutions to the bootstrap equations for the XYZ
Heisenberg antiferromagnet. These solutions are expected to give the correlation functions of
the XYZ model in the antiferromagnetic regime. The first solution is essentially the same as the
formula given by Lashkevich and Pugai [9]. Lashkevich–Pugai’s formula can be obtained from
the correlation function in the RSOS-type model, by using the vertex–face correspondence.
In order to avoid the pole resulting from [k] in the denominator, k ∈ Z + δ should be assumed
with some real δ, and the limit δ → 0 should be taken after all calculation [9]. On the other
hand, we constructed our first formula from the correlation function in the cyclic SOS model
so that no such regularization was needed.

By the construction, both Lashkevich–Pugai’s formula and our first formula for
2n-point XYZ correlation function remain the sum with respect to the local height variables
k0, k1, . . . , k2n other than the n-fold integral. When r ∈ Z>1 we construct another (r +1)n-fold
integral formula, in which the sum with respect to k1, . . . , k2n can be carried out. The structure
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of our second formula is quite similar to Shiraishi’s formula [23], though the latter treated
only the case r = 3

2 .
Concerning the second formula, we have not yet proved the normalization condition. The

number of integral variables in the second formula is much greater than that in the first one, so
that the recursion relation for the second one is not so simple. Nevertheless, we believe that the
normalization condition holds in the second integral formula. Actually, the number of integral
variables in the second formula is not minimal but redundant. It is sufficient for the number
of integral variables N in the second formula to satisfy n � N − n ≡ 0 (mod r). Thus, we can
make anN(n)-fold integral formula, whereN(n) = n+mr for (m−1)r < n � mr with some
m ∈ Z>0. If we employ this ‘minimal’ integral solution, the normalization condition holds
unless n ≡ 1 (mod r) for the same reason as in the first formula. However, the validity of the
recursion relation in the ‘minimal’ integral solution again becomes unclear for n = mr + 1
because N(n)− N(n− 1) = r + 1.

Another future problem is to consider the bootstrap equations for Belavin’s Z/nZ-
symmetric model and to construct integral formulae of the correlation functions. We wish to
address this problem in a separate paper.
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Appendix. Properties of the R-matrix

The main properties of the R-matrix of the eight-vertex model are the Yang–Baxter equation

R12(ζ1/ζ2)R13(ζ1/ζ3)R23(ζ2/ζ3) = R23(ζ2/ζ3)R13(ζ1/ζ3)R12(ζ1/ζ2) (A.1)

where the subscript of the R-matrix denotes the spaces on which R nontrivially acts; the initial
condition

R(1) = P (A.2)

the unitarity relation

R12(ζ1/ζ2)R21(ζ2/ζ1) = 1 (A.3)

the Z2-parity

R12(−ζ ) = −σ z1R12(ζ )σ
z
1 (A.4)

and the crossing symmetries

R
t1
21(ζ2/ζ1) = σx1 R12(x

−1ζ1/ζ2)σ
x
1 = −σy1 R12(−x−1ζ1/ζ2)σ

y

1 . (A.5)

In (A.4), (A.5) the shift ζ 
→ −ζ implies the one such that u 
→ u − π
√−1
ε

. The properties
(A.2)–(A.5) hold if the normalization factor of the R-matrix satisfies the following relations:

κ(ζ )κ(ζ−1) = 1 κ(x−1ζ−1) = κ(ζ ). (A.6)
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Under this normalization the partition function per lattice site is equal to unity in the
thermodynamic limit [12, 17].
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Phys. 32 259–68

[26] Foda O, Iohara K, Jimbo M, Kedem R, Miwa T and Yan H 1995 Notes on highest weight modules of the elliptic
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